\(\int \frac {x^4 (c+d x^2)^{3/2}}{a+b x^2} \, dx\) [685]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 210 \[ \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx=\frac {\left (b^2 c^2-10 a b c d+8 a^2 d^2\right ) x \sqrt {c+d x^2}}{16 b^3 d}+\frac {(7 b c-6 a d) x^3 \sqrt {c+d x^2}}{24 b^2}+\frac {d x^5 \sqrt {c+d x^2}}{6 b}+\frac {a^{3/2} (b c-a d)^{3/2} \arctan \left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b^4}-\frac {(b c-2 a d) \left (b^2 c^2+8 a b c d-8 a^2 d^2\right ) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{16 b^4 d^{3/2}} \]

[Out]

a^(3/2)*(-a*d+b*c)^(3/2)*arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))/b^4-1/16*(-2*a*d+b*c)*(-8*a^2*d^2+
8*a*b*c*d+b^2*c^2)*arctanh(x*d^(1/2)/(d*x^2+c)^(1/2))/b^4/d^(3/2)+1/16*(8*a^2*d^2-10*a*b*c*d+b^2*c^2)*x*(d*x^2
+c)^(1/2)/b^3/d+1/24*(-6*a*d+7*b*c)*x^3*(d*x^2+c)^(1/2)/b^2+1/6*d*x^5*(d*x^2+c)^(1/2)/b

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.292, Rules used = {488, 596, 537, 223, 212, 385, 211} \[ \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx=\frac {a^{3/2} (b c-a d)^{3/2} \arctan \left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b^4}-\frac {(b c-2 a d) \left (-8 a^2 d^2+8 a b c d+b^2 c^2\right ) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{16 b^4 d^{3/2}}+\frac {x \sqrt {c+d x^2} \left (8 a^2 d^2-10 a b c d+b^2 c^2\right )}{16 b^3 d}+\frac {x^3 \sqrt {c+d x^2} (7 b c-6 a d)}{24 b^2}+\frac {d x^5 \sqrt {c+d x^2}}{6 b} \]

[In]

Int[(x^4*(c + d*x^2)^(3/2))/(a + b*x^2),x]

[Out]

((b^2*c^2 - 10*a*b*c*d + 8*a^2*d^2)*x*Sqrt[c + d*x^2])/(16*b^3*d) + ((7*b*c - 6*a*d)*x^3*Sqrt[c + d*x^2])/(24*
b^2) + (d*x^5*Sqrt[c + d*x^2])/(6*b) + (a^(3/2)*(b*c - a*d)^(3/2)*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]*Sqrt[c +
 d*x^2])])/b^4 - ((b*c - 2*a*d)*(b^2*c^2 + 8*a*b*c*d - 8*a^2*d^2)*ArcTanh[(Sqrt[d]*x)/Sqrt[c + d*x^2]])/(16*b^
4*d^(3/2))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 488

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*(e*x)^
(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(b*e*(m + n*(p + q) + 1))), x] + Dist[1/(b*(m + n*(p + q) + 1
)), Int[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*((c*b - a*d)*(m + 1) + c*b*n*(p + q)) + (d*(c*b - a*d
)*(m + 1) + d*n*(q - 1)*(b*c - a*d) + c*b*d*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && N
eQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 596

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
 x_Symbol] :> Simp[f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q +
 1) + 1))), x] - Dist[g^n/(b*d*(m + n*(p + q + 1) + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*
f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]

Rubi steps \begin{align*} \text {integral}& = \frac {d x^5 \sqrt {c+d x^2}}{6 b}+\frac {\int \frac {x^4 \left (c (6 b c-5 a d)+d (7 b c-6 a d) x^2\right )}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{6 b} \\ & = \frac {(7 b c-6 a d) x^3 \sqrt {c+d x^2}}{24 b^2}+\frac {d x^5 \sqrt {c+d x^2}}{6 b}-\frac {\int \frac {x^2 \left (3 a c d (7 b c-6 a d)-3 d \left (b^2 c^2-10 a b c d+8 a^2 d^2\right ) x^2\right )}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{24 b^2 d} \\ & = \frac {\left (b^2 c^2-10 a b c d+8 a^2 d^2\right ) x \sqrt {c+d x^2}}{16 b^3 d}+\frac {(7 b c-6 a d) x^3 \sqrt {c+d x^2}}{24 b^2}+\frac {d x^5 \sqrt {c+d x^2}}{6 b}+\frac {\int \frac {-3 a c d \left (b^2 c^2-10 a b c d+8 a^2 d^2\right )-3 d (b c-2 a d) \left (b^2 c^2+8 a b c d-8 a^2 d^2\right ) x^2}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{48 b^3 d^2} \\ & = \frac {\left (b^2 c^2-10 a b c d+8 a^2 d^2\right ) x \sqrt {c+d x^2}}{16 b^3 d}+\frac {(7 b c-6 a d) x^3 \sqrt {c+d x^2}}{24 b^2}+\frac {d x^5 \sqrt {c+d x^2}}{6 b}+\frac {\left (a^2 (b c-a d)^2\right ) \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{b^4}-\frac {\left ((b c-2 a d) \left (b^2 c^2+8 a b c d-8 a^2 d^2\right )\right ) \int \frac {1}{\sqrt {c+d x^2}} \, dx}{16 b^4 d} \\ & = \frac {\left (b^2 c^2-10 a b c d+8 a^2 d^2\right ) x \sqrt {c+d x^2}}{16 b^3 d}+\frac {(7 b c-6 a d) x^3 \sqrt {c+d x^2}}{24 b^2}+\frac {d x^5 \sqrt {c+d x^2}}{6 b}+\frac {\left (a^2 (b c-a d)^2\right ) \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{b^4}-\frac {\left ((b c-2 a d) \left (b^2 c^2+8 a b c d-8 a^2 d^2\right )\right ) \text {Subst}\left (\int \frac {1}{1-d x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{16 b^4 d} \\ & = \frac {\left (b^2 c^2-10 a b c d+8 a^2 d^2\right ) x \sqrt {c+d x^2}}{16 b^3 d}+\frac {(7 b c-6 a d) x^3 \sqrt {c+d x^2}}{24 b^2}+\frac {d x^5 \sqrt {c+d x^2}}{6 b}+\frac {a^{3/2} (b c-a d)^{3/2} \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{b^4}-\frac {(b c-2 a d) \left (b^2 c^2+8 a b c d-8 a^2 d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {d} x}{\sqrt {c+d x^2}}\right )}{16 b^4 d^{3/2}} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(457\) vs. \(2(210)=420\).

Time = 1.99 (sec) , antiderivative size = 457, normalized size of antiderivative = 2.18 \[ \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx=\frac {b \sqrt {d} x \sqrt {c+d x^2} \left (24 a^2 d^2-6 a b d \left (5 c+2 d x^2\right )+b^2 \left (3 c^2+14 c d x^2+8 d^2 x^4\right )\right )+48 \sqrt {a} \sqrt {d} (-b c+a d) \sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \left (-b c+a d-\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \arctan \left (\frac {\sqrt {2 b c-a d-2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (\sqrt {c}-\sqrt {c+d x^2}\right )}\right )+48 \sqrt {a} \sqrt {d} (-b c+a d) \left (-b c+a d+\sqrt {b} \sqrt {c} \sqrt {b c-a d}\right ) \sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} \arctan \left (\frac {\sqrt {2 b c-a d+2 \sqrt {b} \sqrt {c} \sqrt {b c-a d}} x}{\sqrt {a} \left (\sqrt {c}-\sqrt {c+d x^2}\right )}\right )+6 \left (b^3 c^3+6 a b^2 c^2 d-24 a^2 b c d^2+16 a^3 d^3\right ) \text {arctanh}\left (\frac {\sqrt {d} x}{\sqrt {c}-\sqrt {c+d x^2}}\right )}{48 b^4 d^{3/2}} \]

[In]

Integrate[(x^4*(c + d*x^2)^(3/2))/(a + b*x^2),x]

[Out]

(b*Sqrt[d]*x*Sqrt[c + d*x^2]*(24*a^2*d^2 - 6*a*b*d*(5*c + 2*d*x^2) + b^2*(3*c^2 + 14*c*d*x^2 + 8*d^2*x^4)) + 4
8*Sqrt[a]*Sqrt[d]*(-(b*c) + a*d)*Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*(-(b*c) + a*d - Sqrt[b]
*Sqrt[c]*Sqrt[b*c - a*d])*ArcTan[(Sqrt[2*b*c - a*d - 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*x)/(Sqrt[a]*(Sqrt[c] -
 Sqrt[c + d*x^2]))] + 48*Sqrt[a]*Sqrt[d]*(-(b*c) + a*d)*(-(b*c) + a*d + Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d])*Sqrt[
2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]*ArcTan[(Sqrt[2*b*c - a*d + 2*Sqrt[b]*Sqrt[c]*Sqrt[b*c - a*d]]
*x)/(Sqrt[a]*(Sqrt[c] - Sqrt[c + d*x^2]))] + 6*(b^3*c^3 + 6*a*b^2*c^2*d - 24*a^2*b*c*d^2 + 16*a^3*d^3)*ArcTanh
[(Sqrt[d]*x)/(Sqrt[c] - Sqrt[c + d*x^2])])/(48*b^4*d^(3/2))

Maple [A] (verified)

Time = 3.06 (sec) , antiderivative size = 189, normalized size of antiderivative = 0.90

method result size
pseudoelliptic \(-\frac {-\frac {b \sqrt {d \,x^{2}+c}\, \left (8 b^{2} d^{2} x^{4}-12 x^{2} a b \,d^{2}+14 x^{2} b^{2} c d +24 a^{2} d^{2}-30 a b c d +3 b^{2} c^{2}\right ) x}{24 d}+\frac {\left (16 a^{3} d^{3}-24 a^{2} b c \,d^{2}+6 a \,b^{2} c^{2} d +b^{3} c^{3}\right ) \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}}{x \sqrt {d}}\right )}{8 d^{\frac {3}{2}}}-\frac {2 \left (a d -b c \right )^{2} a^{2} \operatorname {arctanh}\left (\frac {\sqrt {d \,x^{2}+c}\, a}{x \sqrt {\left (a d -b c \right ) a}}\right )}{\sqrt {\left (a d -b c \right ) a}}}{2 b^{4}}\) \(189\)
risch \(\frac {x \left (8 b^{2} d^{2} x^{4}-12 x^{2} a b \,d^{2}+14 x^{2} b^{2} c d +24 a^{2} d^{2}-30 a b c d +3 b^{2} c^{2}\right ) \sqrt {d \,x^{2}+c}}{48 d \,b^{3}}-\frac {\frac {\left (16 a^{3} d^{3}-24 a^{2} b c \,d^{2}+6 a \,b^{2} c^{2} d +b^{3} c^{3}\right ) \ln \left (x \sqrt {d}+\sqrt {d \,x^{2}+c}\right )}{b \sqrt {d}}-\frac {8 a^{2} d \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}+\frac {8 a^{2} d \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\sqrt {-a b}\, b \sqrt {-\frac {a d -b c}{b}}}}{16 b^{3} d}\) \(502\)
default \(\text {Expression too large to display}\) \(1389\)

[In]

int(x^4*(d*x^2+c)^(3/2)/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

-1/2/b^4*(-1/24*b*(d*x^2+c)^(1/2)*(8*b^2*d^2*x^4-12*a*b*d^2*x^2+14*b^2*c*d*x^2+24*a^2*d^2-30*a*b*c*d+3*b^2*c^2
)/d*x+1/8*(16*a^3*d^3-24*a^2*b*c*d^2+6*a*b^2*c^2*d+b^3*c^3)/d^(3/2)*arctanh((d*x^2+c)^(1/2)/x/d^(1/2))-2*(a*d-
b*c)^2*a^2/((a*d-b*c)*a)^(1/2)*arctanh((d*x^2+c)^(1/2)/x*a/((a*d-b*c)*a)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 1.36 (sec) , antiderivative size = 1119, normalized size of antiderivative = 5.33 \[ \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx=\text {Too large to display} \]

[In]

integrate(x^4*(d*x^2+c)^(3/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

[1/96*(3*(b^3*c^3 + 6*a*b^2*c^2*d - 24*a^2*b*c*d^2 + 16*a^3*d^3)*sqrt(d)*log(-2*d*x^2 + 2*sqrt(d*x^2 + c)*sqrt
(d)*x - c) - 24*(a*b*c*d^2 - a^2*d^3)*sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^
2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c + a^2*d)*sqrt(d*x^2 + c))/(b^2*x
^4 + 2*a*b*x^2 + a^2)) + 2*(8*b^3*d^3*x^5 + 2*(7*b^3*c*d^2 - 6*a*b^2*d^3)*x^3 + 3*(b^3*c^2*d - 10*a*b^2*c*d^2
+ 8*a^2*b*d^3)*x)*sqrt(d*x^2 + c))/(b^4*d^2), 1/48*(3*(b^3*c^3 + 6*a*b^2*c^2*d - 24*a^2*b*c*d^2 + 16*a^3*d^3)*
sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*x^2 + c)) - 12*(a*b*c*d^2 - a^2*d^3)*sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*
a*b*c*d + 8*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c
 + a^2*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + (8*b^3*d^3*x^5 + 2*(7*b^3*c*d^2 - 6*a*b^2*d^3)*x^3 +
 3*(b^3*c^2*d - 10*a*b^2*c*d^2 + 8*a^2*b*d^3)*x)*sqrt(d*x^2 + c))/(b^4*d^2), 1/96*(48*(a*b*c*d^2 - a^2*d^3)*sq
rt(a*b*c - a^2*d)*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2
)*x^3 + (a*b*c^2 - a^2*c*d)*x)) + 3*(b^3*c^3 + 6*a*b^2*c^2*d - 24*a^2*b*c*d^2 + 16*a^3*d^3)*sqrt(d)*log(-2*d*x
^2 + 2*sqrt(d*x^2 + c)*sqrt(d)*x - c) + 2*(8*b^3*d^3*x^5 + 2*(7*b^3*c*d^2 - 6*a*b^2*d^3)*x^3 + 3*(b^3*c^2*d -
10*a*b^2*c*d^2 + 8*a^2*b*d^3)*x)*sqrt(d*x^2 + c))/(b^4*d^2), 1/48*(24*(a*b*c*d^2 - a^2*d^3)*sqrt(a*b*c - a^2*d
)*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt(d*x^2 + c)/((a*b*c*d - a^2*d^2)*x^3 + (a*b*c^2
 - a^2*c*d)*x)) + 3*(b^3*c^3 + 6*a*b^2*c^2*d - 24*a^2*b*c*d^2 + 16*a^3*d^3)*sqrt(-d)*arctan(sqrt(-d)*x/sqrt(d*
x^2 + c)) + (8*b^3*d^3*x^5 + 2*(7*b^3*c*d^2 - 6*a*b^2*d^3)*x^3 + 3*(b^3*c^2*d - 10*a*b^2*c*d^2 + 8*a^2*b*d^3)*
x)*sqrt(d*x^2 + c))/(b^4*d^2)]

Sympy [F]

\[ \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx=\int \frac {x^{4} \left (c + d x^{2}\right )^{\frac {3}{2}}}{a + b x^{2}}\, dx \]

[In]

integrate(x**4*(d*x**2+c)**(3/2)/(b*x**2+a),x)

[Out]

Integral(x**4*(c + d*x**2)**(3/2)/(a + b*x**2), x)

Maxima [F]

\[ \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx=\int { \frac {{\left (d x^{2} + c\right )}^{\frac {3}{2}} x^{4}}{b x^{2} + a} \,d x } \]

[In]

integrate(x^4*(d*x^2+c)^(3/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)^(3/2)*x^4/(b*x^2 + a), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x^4*(d*x^2+c)^(3/2)/(b*x^2+a),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 \left (c+d x^2\right )^{3/2}}{a+b x^2} \, dx=\int \frac {x^4\,{\left (d\,x^2+c\right )}^{3/2}}{b\,x^2+a} \,d x \]

[In]

int((x^4*(c + d*x^2)^(3/2))/(a + b*x^2),x)

[Out]

int((x^4*(c + d*x^2)^(3/2))/(a + b*x^2), x)